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Abstract— The qualitative behavior of a multi-parameter 

dynamical system has been investigated. It is shown that 

changes in the initial data of a dynamical system will affect 

the stabilization of the steady-state solution which is 

originally unstable. It is further shown that the stabilization 

of a five-dimensional dynamical system can be used as an 

alternative method of verifying qualitatively the concept of 

the stability of a unique positive steady-state solution. These 

novel contributions have not been seen elsewhere; these are 

presented and discussed in this paper. 
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I. INTRODUCTION 

Agarwal and Devi (2011) studied in detail the mathematical 

analysis of a resource-dependent competition model using 

the method of local stability analysis. Other relevant 

mathematical approaches to the concept of stability analysis 

have been done [Rescigno (1977);Hallam, Clark and Jordan 

(1983);Hallam, Clark and Lassiter (1983);Hallam and Luna 

(1984);Freedman and So (1985); Lancaster and 

Tismenetssky (1985);De Luna and Hallam (1987); Zhien 

and Hallam (1987);Freeman and Shukla (1991);Huaping 

and Zhien (1991);Garcia-Montiel and Scatena (1994); 

Chattopadhyay (1996);Hsu and Waltman (1998); Dubey 

and Hussain (2000);Hsu, Li and Waltman (2000);Thieme 

(2000); Shukla, Agarwal, Dubey and Sinha (2001); Ekaka-a 

(2009); Shukla, Sharma, Dubey and Sinha (2009); Yan and 

Ekaka-a (2011);Dhar, Chaudhary and Sahu (2013); 

Akpodee and Ekaka-a (2015)]. The method of thispresent 

study uses the technique of a numerical simulation to 

quantify the qualitative characteristics of a complex 

dynamical system with changing initial data. 

 

II. MATHEMATICAL FORMULATION 

We have considered the following continuous multi-

parameter system of nonlinear first order ordinary 

differential equations indexed by the appropriate initial 

conditions according to Agarwal and Devi (2011): 

𝑑𝑥1

𝑑𝑡
= 𝑎1𝑥1 − 𝑎2𝑥1

2 − 𝛼𝑥1𝑥2 + 𝛼1𝑥1𝑅 − 𝑘1𝛿1𝑥1𝑇, 𝑥1(0) =

𝑥10 ≥ 0,               (1a) 
𝑑𝑥2

𝑑𝑡
= 𝑏1𝑥2 − 𝑏2𝑥2

2 −  𝛽𝑥1𝑥2 + 𝛽1𝑥2𝑅 − 𝑘2𝛿2𝑥2𝑇, 𝑥2(0) =

𝑥20 ≥ 0,     (1b) 
𝑑𝑅

𝑑𝑡
= 𝑐1𝑅 − 𝑐2𝑅2 − 𝛼1𝑥1𝑅 − 𝛽1𝑥2𝑅 − 𝑘𝛾𝑅𝑇, 𝑅(0) = 𝑅0 ≥

0,                     (1c) 
𝑑𝑃

𝑑𝑡
= 𝜂𝑥1 + 𝜂𝑥2 − (𝜆0 + 𝜃)𝑃, 𝑃(0) = 𝑃0 ≥ 0,      (1d) 

𝑑𝑇

𝑑𝑡
= 𝑄 + 𝜇𝜃𝑃 − 𝛿0𝑇 − 𝛿1𝑥1𝑇 − 𝛿2𝑥2𝑇 − 𝛾𝑅𝑇, 𝑇(0) =

𝑇0 ≥ 0,     (1e) 

where 

𝑥1 and 𝑥2 are the densities of the first and second competing 

species, respectively, R is the density of resource biomass, 

P is the cumulative concentration of precursors produced by 

species forming the toxicant, T is the concentration of the 

same toxicant in the environment under consideration, Q is 

the cumulative rate of emission of the same toxicant into the 

environment from various external sources,  𝑎1 and 𝑏1 are 

the intrinsic growth rates of the first and second species, 

respectively, 𝑎2 and 𝑏2are intraspecific interference 

coefficients,𝛼, 𝛽 are the interspecific interference 

coefficients of first and second species, respectively,𝛼1 and 

𝛽1 are the growth rate coefficients of first and second 

species, respectively due to resource biomass. 𝑘1, 𝑘2 and 𝑘 

are fractions of the assimilated amount directly affecting the 

growth rates of densities of competing species and resource 

biomass, 𝜂 is the growth rate coefficient of the cumulative 

concentration of precursors. 𝜆0 is its depletion rate 

coefficient due to natural factors whereas 𝜃 is the depletion 

rate coefficient caused by its transformation into the same 

toxicant of concentration 𝑇. 𝜇 is the rate of the formation of 

the toxicant from precursors of competing species. 𝛿1, 𝛿2 

and 𝛾 are the rates of depletion of toxicant in the 

environment due to uptake of toxicant by species and their 

resource biomass, respectively. 

It is assumed that the resource biomass grows logistically 

with the supply rate of the external resource input to the 

system by constant 𝑐1 and its density reduces due to certain 
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degradation factors present in the environment at a rate 𝑐2.It 

is further assumed that the toxicant in the environment is 

washed out or broken down with rate 𝛿0. 

 

Research Question 

For the purpose of this study, we have considered the 

following vital research question:How does a given 

dynamical multi-parameter system of continuous nonlinear 

first-order ordinary differential equations respond to a 

qualitative characteristic, that is, assuming a point 

(𝑥1𝑒 , 𝑥2𝑒 , 𝑅𝑒 , 𝑃𝑒 , 𝑇𝑒) is an arbitrary steady-state solution, as 

the independent variable 𝑡 approaches infinity (𝑡 → ∞), do 

𝑥1 → 𝑥1𝑒, 𝑥2 →  𝑥2𝑒, 𝑅 → 𝑅𝑒, 𝑃 → 𝑃𝑒, 𝑇 → 𝑇𝑒  under some 

simplifying initial conditions? This mathematical idea is a 

necessary and sufficient condition that quantifies the 

concept of the stabilization of the steady-state solution 

(𝑥1𝑒 , 𝑥2𝑒 , 𝑅𝑒 , 𝑃𝑒 , 𝑇𝑒) (Yan and Ekaka-a, 2011). In other 

words, for a complex system of nonlinear first-order 

ordinary differential equations whose interacting functions 

are continuous and partially differentiable, what is the likely 

qualitative characteristic of such a system? The focus of this 

chapter will tackle the following proposed problem that is 

clearly defined next. 

 

Research Hypothesis 

It is a well-established ecological fact that the initial 

ecological data, which mathematicians called initial 

conditions, are not static characteristic values of a 

dynamical system. The corresponding core research 

question is, when the initial data change, how does the 

dynamical system respond to this change over a longer 

period of time? This hypothesis if successfully tested and 

proved in this research, has the potential to provide an 

insight in the further study of ecosystem stability and 

ecosystem planning. 

 

Method of Analysis 

A well-defined MATLAB ODE45 function has been used 

to construct tables to determine the effect of changing 

values of initial data on the stability of the dynamical 

system for large values of the independent variable 𝑡. 

Following Agarwal and Devi (2011), the values of 

parameter values which are used in the numerical 

simulations for system (1) are: 

𝑎1 = 5,    𝑎2 = 0.22,    𝛼 = 0.007,    𝛼1 = 0.2,    𝑘1 = 0.1,    

𝛿1 = 0.05,    𝑏1 = 3,    𝑏2 = 0.26,   𝛽 = 0.008,    𝛽1 =

0.04,   𝑘2 = 0.2,   𝛿2 = 0.04,    𝜂 = 0.5,   𝜆0 = 0.01,  

 𝜃 = 3,    𝜇 = 0.2,    𝛿0 = 7,    𝛾 = 0.3,    𝑐1 = 10,    

𝑐2 = 0.3,    𝑘 = 0.1,    𝑄 = 30. 

 

III. RESULTS AND DISCUSSIONS 

Some twenty (20) numerical simulations are observed to 

determine the effect of changing values of initial data on the 

stability of the dynamical system for 𝑡 = 3650 days as 

shown in Table 1 below: 

 

Table.1: Numerical simulation of a dynamical system for changing initial data at 𝑡 = 3650 days, using a MATLAB ODE45 

numerical scheme. 

Example Initial Data (ID) Independent 

Variable t days 

x1e x2e Re Pe Te 

1 1 3650 25.4443 15.2308 30.7270 6.7195 2.1454 

2 2 3650 25.3091 15.2308 30.6851 6.7195 2.1086 

3 3 3650 25.3551 15.2308 30.6872 6.7195 2.1054 

4 4 3650 25.3783 15.2308 30.6901 6.7195 2.1042 

5 5 3650 25.3923 15.2308 30.6931 6.7195 2.1041 

6 6 3650 25.4018 15.2308 30.6958 6.7195 2.1046 

7 7 3650 25.4085 15.2308 30.6983 6.7195 2.1055 

8 8 3650 25.4129 15.2308 30.6979 6.7195 2.1066 

9 9 3650 25.4169 15.2308 30.6997 6.7195 2.1080 

10 10 3650 25.4202 15.2308 30.7014 6.7195 2.1094 

11 11 3650 25.4229 15.2308 30.7030 6.7195 2.1108 

12 12 3650 25.4252 15.2308 30.7045 6.7195 2.1123 

13 13 3650 25.4272 15.2308 30.7058 6.7195 2.1138 

14 14 3650 25.4288 15.2308 30.7071 6.7195 2.1153 

15 15 3650 25.4303 15.2308 30.7083 6.7195 2.1168 

16 16 3650 25.4316 15.2308 30.7094 6.7195 2.1183 
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Example Initial Data (ID) Independent 

Variable t days 

x1e x2e Re Pe Te 

17 17 3650 25.4328 15.2308 30.7105 6.7195 2.1197 

18 18 3650 25.4338 15.2308 30.7115 6.7195 2.1211 

19 19 3650 25.4347 15.2308 30.7125 6.7195 2.1225 

20 20 3650 25.4356 15.2308 30.7134 6.7195 2.1239 

 

where 

ID 1 = (2, 0.01, 0.01, 0.1, 0.1), ID 2 = (0.10, 0.01, 0.01, 0.1, 

0.1),  

ID 3 = (0.15, 0.01, 0.01, 0.1, 0.1), ID 4 = (0.20, 0.01, 0.01, 

0.1, 0.1), 

ID 5 = (0.25, 0.01, 0.01, 0.1, 0.1), ID 6 = (0.30, 0.01, 0.01, 

0.1, 0.1), 

ID 7 = (0.35, 0.01, 0.01, 0.1, 0.1), ID 8 = (0.40, 0.01, 0.01, 

0.1, 0.1), 

ID 9 = (0.45, 0.01, 0.01, 0.1, 0.1), ID 10 = (0.50, 0.01, 0.01, 

0.1, 0.1), 

ID 11 = (0.55, 0.01, 0.01, 0.1, 0.1), ID 12 = (0.60, 0.01, 

0.01, 0.1, 0.1), 

ID 13 = (0.65, 0.01, 0.01, 0.1, 0.1), ID 14 = (0.70, 0.01, 

0.01, 0.1, 0.1), 

ID 15 = (0.75, 0.01, 0.01, 0.1, 0.1), ID 16 = (0.80, 0.01, 

0.01, 0.1, 0.1), 

ID 17 = (0.85, 0.01, 0.01, 0.1, 0.1), ID 18 = (0.90, 0.01, 

0.01, 0.1, 0.1), 

ID 19 = (0.95, 0.01, 0.01, 0.1, 0.1),  ID 20 = (1, 0.01, 0.01, 

0.1, 0.1). 

Considering Table 1, we deduced mathematically that, as 

𝑡 → ∞ for the given initial conditions,𝑥1 → 𝑥1𝑒, 𝑥2 →  𝑥2𝑒, 

𝑅 → 𝑅𝑒, 𝑃 → 𝑃𝑒, 𝑇 → 𝑇𝑒 . We have shown that as the initial 

data are changing, the system is approaching its steady-

state. This shows that changes in the initial data of a 

dynamical system will affect the stabilization of the steady-

state solution which is originally unstable. 

 

Table.2: Test of stability of steady-state solutions for changing values of initial data, using a MATLAB ODE45 numerical 

scheme. 

Example Initial 

Data 

(ID) 

Steady-state 

solution (or 

point) 

λ1 λ2 λ3 λ4 λ5 TOS 

1 1 1  -18.1705 -9.3804 -5.7543 -3.0150 -4.0180 Stable 

2 2 2 -18.1498 -9.3527 -5.6958 -3.0150 -4.0180 Stable 

3 3 3 -18.1527 -9.3547 -5.7159 -3.0150 -4.0185 Stable 

4 4 4 -18.1547 -9.3568 -5.7260 -3.0150 -4.0186 Stable 

5 5 5 -18.1563 -9.3589 -5.7321 -3.0150 -4.0187 Stable 

6 6 6 -18.1576 -9.3607 -5.7362 -3.0150 -4.0187 Stable 

7 7 7 -18.1587 -9.3623 -5.7391 -3.0150 -4.0186 Stable 

8 8 8 -18.1588 -9.3621 -5.7411 -3.0150 -4.0187 Stable 

9 9 9 -18.1596 -9.3633 -5.7428 -3.0150 -4.0187 Stable 

10 10 10 -18.1604 -9.3644 -5.7442 -3.0150 -4.0187 Stable 

11 11 11 -18.1610 -9.3654 -5.7453 -3.0150 -4.0186 Stable 

12 12 12 -18.1616 -9.3664 -5.7463 -3.0150 -4.0186 Stable 

13 13 13 -18.1622 -9.3672 -5.7472 -3.0150 -4.0186 Stable 

14 14 14 -18.1627 -9.3680 -5.7478 -3.0150 -4.0185 Stable 

15 15 15 -18.1632 -9.3688 -5.7485 -3.0150 -4.0185 Stable 

16 16 16 -18.1637 -9.3695 -5.7490 -3.0150 -4.0185 Stable 

17 17 17 -18.1641 -9.3701 -5.7495 -3.0150 -4.0185 Stable 

18 18 18 -18.1645 -9.3708 -5.7500 -3.0150 -4.0184 Stable 

19 19 19 -18.1649 -9.3714 -5.7505 -3.0150 -4.0184 Stable 

20 20 20 -18.1653 -9.3720 -5.7507 -3.0150 -4.0184 Stable 
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where 

Point 1 = (25.4443, 15.2308, 30.7270, 6.7195, 2.1454), 

Point 2 = (25.3091, 15.2308, 30.6851, 6.7195, 2.1086), 

Point 3 = (25.3551, 15.2308, 30.6872, 6.7195, 2.1054), 

Point 4 = (25.3783, 15.2308, 30.6901, 6.7195, 2.1042), 

Point 5 = (25.3923, 15.2308, 30.6931, 6.7195, 2.1041), 

Point 6 = (25.4018, 15.2308, 30.6958, 6.7195, 2.1046), 

Point 7 = (25.4085, 15.2308, 30.6983, 6.7195, 2.1055), 

Point 8 = (25.4129, 15.2308, 30.6979, 6.7195, 2.1066), 

Point 9 = (25.4169, 15.2308, 30.6997, 6.7195, 2.1080), 

Point 10 = (25.4202, 15.2308, 30.7014, 6.7195, 2.1094), 

Point 11 = (25.4229, 15.2308, 30.7030, 6.7195, 2.1101), 

Point 12 = (25.4252, 15.2308, 30.7045, 6.7195, 2.1123), 

Point 13 = (25.4272, 15.2308, 30.7058, 6.7195, 2.1138), 

Point 14 = (25.4288, 15.2308, 30.7071, 6.7195, 2.1153), 

Point 15 = (25.4303, 15.2308, 30.7083, 6.7195, 2.1168), 

Point 16 = (25.4316, 15.2308, 30.7094, 6.7195, 2.1183), 

Point 17 = (25.4328, 15.2308, 30.7105, 6.7195, 2.1197), 

Point 18 = (25.4338, 15.2308, 30.7115, 6.7195, 2.1211), 

Point 19 = (25.4347, 15.2308, 30.7125, 6.7195, 2.1225), 

Point 20 = (25.4356, 15.2308, 30.7134, 6.7195, 2.1239). 

What do we learn from Table 2? On the basis of this 

sophisticated computational approach which we have not 

seen elsewhere, we hereby infer that the stabilization of a 

five-dimensional dynamical system can be used as an 

alternative method of verifying qualitatively the concept of 

the stability of a unique positive steady-state solution which 

could have been a daunting task to resolve analytically.  

However, this key contribution is only valid as long as the 

intrinsic growth rate 𝑎1 is bigger than the intra-competition 

coefficient 𝑎2 of the first competing species; the intrinsic 

growth rate 𝑏1 is bigger than the intra-competition 

coefficient 𝑏2 of the second competing species and the 

intrinsic growth rate of the resource biomass 𝑐1 is bigger 

than the intra-competition coefficient 𝑐2 of the resource 

biomass. In the event that the intra-competition coefficients 

of these three populations outweigh their corresponding 

intrinsic growth rates, will the specified steady-state 

solutions still be stable?  Without loss of generality, it is 

interesting to observe that each of the twenty (20) stable 

steady-state solutions is also qualitatively well-defined 

within the choice of the model dynamics in the absence of 

proper model parameter estimation. The idea is consistent 

with the earlier discovery of Ekaka-a (2009). 

 

IV. CONCLUSION AND RECOMMENDATION 

We have shown in this research that stabilization is an 

alternative way of testing for stability. Therefore, the 

application of a computational approach in the 

determination of the stability characteristic using the 

concept of stabilization is one of the contributions of this 

work that can be used to move the frontier of knowledge in 

the field of numerical mathematics with respect to stability 

of a dynamical system.We recommend a further 

investigation of the effect of fixed initial data for changing 

values of the independent variable. 
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